Systemic Computation Using Graphics Processors

نویسندگان

  • Marjan Rouhipour
  • Peter J. Bentley
  • Hooman Shayani
چکیده

Previous work created the systemic computer – a model of computation designed to exploit many natural properties observed in biological systems, including parallelism. The approach has been proven through two existing implementations and many biological models and visualizations. However to date the systemic computer implementations have all been sequential simulations that do not exploit the true potential of the model. In this paper the first parallel implementation of systemic computation is introduced. The GPU Systemic Computation Architecture is the first implementation that enables parallel systemic computation by exploiting multiple cores available in graphics processors. Comparisons with the serial implementation when running a genetic algorithm at different scales show that as the number of systems increases, the parallel architecture is several hundred times faster than the existing implementations, making it feasible to investigate systemic models of more complex biological systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Modern Graphics Processors for General Computation

The computational power of PC graphics processors has taken giant leaps forward in recent years. Instead of being simple line-drawing devices, these processors now often prove viable, and in fact superior, alternatives to regular CPUs when it comes to heavy computation.

متن کامل

Fast bio-inspired computation using a GPU-based systemic computer

Biology is inherently parallel. Models of biological systems and bio-inspired algorithms also share this parallelism, although most are simulated on serial computers. Previous work created the systemic computer – a new model of computation designed to exploit many natural properties observed in biological systems, including parallelism. The approach has been proven through two existing implemen...

متن کامل

Experimental Fault-Tolerant Synchronization for Reliable Computation on Graphics Processors

Graphics processors (GPUs) are emerging as a promising platform for highly parallel, compute-intensive, general-purpose computations, which usually need support for inter-process synchronization. Using the traditional lock-based synchronization (e.g. mutual exclusion) makes the computation vulnerable to faults caused by both scientists’ inexperience and hardware transient errors. It is notoriou...

متن کامل

Although the performance of commodity computers has improved drastically with the introduction of multicore processors and GPU computing, the standard R distribution is still based on single-threaded model of computation, using only a small fraction of t

Although the performance of commodity computers has improved drastically with the introduction of multicore processors and GPU computing, the standard R distribution is still based on single-threaded model of computation, using only a small fraction of the computational power available now for most desktops and laptops. Modern statistical software packages rely on high performance implementatio...

متن کامل

IA Algorithm Acceleration Using GPUs

Graphics Processing Units (GPUs) have been evolving very fast, turning into high performance programmable processors. Though GPUs have been designed to compute graphics algorithms, their power and flexibility makes them a very attractive platform for generalpurpose computing. In the last years they have been used to accelerate calculations in physics, computer vision, artificial intelligence, d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010